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In this work, we present some results on the distribution of Lee–Yang zeros for

the ferromagnetic Ising model on the rooted Cayley Tree (Bethe Lattice),

assuming free boundary conditions, and in the one-dimensional lattice with

periodic boundary conditions. In the case of the Cayley Tree, we derive the

conditions that the interactions between spins must obey in order to ensure

existence or absence of phase transition at finite temperature (T ] 0). The

results are first obtained for periodic interactions along the generations of the

lattice. Then, using periodic approximants, we are also able to obtain results for

aperiodic sequences generated by substitution rules acting on a finite alphabet.

The particular examples of the Fibonacci and the Thue-Morse sequences are

discussed. Most of the results are obtained for a Cayley Tree with arbitrary

order d. We will be concerned in showing whether or not the zeros become

dense in the whole unit circle of the fugacity variable. Regarding the one-

dimensional Ising model, we derive a general treatment for the structure of gaps

(regions free of Lee–Yang zeros) around the unit circle.

KEY WORDS: Lee–Yang zeros; aperiodic systems; substitution sequences.

1. INTRODUCTION

The ferromagnetic Ising model on a finite lattice L, with pair interactions and

under a constant external magnetic field H, is described by the Hamiltonian

HL=− C
i, j ¥ L

Jijsisj−C
i ¥ L

Hsi, (1)



with Jij \ 0 and si=±1. See ref. 1 for historical remarks. It is well known

that the partition function of this model is a polynomial of degree #L (the

cardinality of the lattice L) on the fugacity variable z=e−2bH, b being the

inverse temperature. This fact implies the existence of #L zeros for the

partition function as a function of z in the complex plane. A celebrated

theorem due to T. D. Lee and C. N. Yang (2, 3) (see also ref. 4 and, for

generalisations, ref. 5) states that, for free boundary conditions, the locus

of the set of zeros on the complex plane has a simple geometrical descrip-

tion: the zeros are all contained in the unit circle S1={z ¥ C| |z|=1}.
Lee and Yang’s circle theorem has important consequences on what

concerns the mechanisms leading to the ferromagnetic phase transition

exhibited by the model in certain lattices when the thermodynamic limit

#LQ. is taken. From the mathematical side, Lee and Yang’s circle

theorem attracted much interest due to its deep-lying relation to Number

Theory and Analysis, in particular, and more remarkably, to properties of

the Riemann zeta function (see ref. 6 for a review and for additional

references).

As first observed in refs. 2 and 3, many thermodynamic properties of

the Ising model are related to the distribution of the zeros in S1. There are,

however, very few systems for which the relation between the partition

function and the fugacity variable is known sufficiently well in order to

allow a detailed study of the distribution of zeros when the thermodynamic

limit is taken. Among these, are the one-dimensional model and the models

defined on the Cayley tree (see below), two systems we will study in this

paper.

For such lattices, it has been known for a while that, when the

couplings Jij are configured in periodic or aperiodic patterns, the distribu-

tion of zeros exhibits an interesting structure of gaps. It has been observed

in refs. 7 and 8 that in the one-dimensional case the gaps are apparently

classifiable according to Bellissard’s gap labelling theorem. (10) Bellissard’s

theorem was proven in the context of the spectral analysis of one-dimen-

sional Schrödinger operators through the study of K-theoretical properties

of certain suitably defined C*-algebras generated by the Hamilton opera-

tors. Although no proof of this relation between Bellissard’s theorem

and the gaps of Lee–Yang zeros is known at the present, this surprising

relation points to a possible connection between the Lee–Yang zeros and

K-theoretical properties of certain C*-algebras somehow related to the

Ising model.3

3 These algebras have not been identified yet, but we conjecture that they are related to the

cross product algebras associated to the mappings yz of the unit circle S1, introduced in

ref. 11.
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In this paper we will not enter into those important but still rather

incipient and speculative algebraic questions. Instead, we employ the

methods of ref. 11 to analyse properties of the distribution of Lee–Yang

singularities of a one-point function for the Ising model on a rooted Cayley

tree with periodic and aperiodic configurations of couplings in terms of

properties of suitably defined dynamical systems. These results will be

described in the next section. In particular, we will present necessary and

sufficient conditions on the couplings in order to guarantee that the set of

Lee–Yang zeros becomes dense in the whole unit circle when the thermo-

dynamic limit is taken.

The methods employed here do not lead to a detailed analysis of the

gap structure of the Lee–Yang zeros on the Cayley tree but, in the

somewhat similar case of the one-dimensional model, many general results

on the gaps have been found using transfer matrix methods, and will be

described in the last sections. We have proved that the regions where the

zeros become dense and, hence, the gaps, depend only on the values of the

interactions and their frequencies in the chains. Since the open one-dimen-

sional chain and the Cayley tree lead to very similar dynamical systems we

believe that analogous results also hold on the Cayley tree. The lack of a

transfer matrix formalism for the Cayley tree, however, inhibits the proof

of such generalisations.

2. THE CAYLEY TREE. DESCRIPTION OF THE RESULTS

Let Cd denote the rooted Cayley Tree of order d. This lattice has

(d+1) bonds attached to each site, except for the root, which has only d
bonds. Let us first consider the finite Cayley Tree with M generations.

We say that the root is the generation 0 of the sites. The generation i is
the set of sites whose minimal path connecting to the root is composed of i
bonds. With this convention the three sites connected to the root in Fig. 1

belong to the first generation, and so forth. Let Ji denote the intensity of the

Fig. 1. Rooted Cayley Tree with d=3 and M=3.
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interaction between spins located at sites of the generations i and i−1. We

will introduce the variables ri defined by ri=e−2bJi.
Considering free boundary conditions, the partition function ZM can

be calculated recursively, starting from the last generation and moving

towards the root:

ZM=z−1/2Z+
0 +z1/2Z−

0 , (2)

where Z±
j are obtained recursively backwards by

Zsj=5 CsŒ=±1
ebJjssŒebhsŒZsŒj+16

d

with Z±
M=1. For the constant case ri=r, the singularities of the function

from which the magnetisation at the origin is derived,

Os0PM=
1
ZM

C
s

s0e−bH(s)=
1−zD0
1+zD0

, (3)

have been studied in ref. 11. Above, Dj=Z−
j /Z

+
j . In that work, it has been

shown that the problem of locating the Lee–Yang singularities was related

to the study of a convenient discrete dynamical system. For d=2 and

constant interactions, the dynamical system can be written as

f0=f (4)

fi+1=f0+L(fi), (5)

where

L(h)=2h−4 arctan 1
r sin(h)

1+r cos(h)2 . (6)

In ref. 11, it was observed that the Lee–Yang zeros in the fugacity

variable are the values of z=e if such that, starting with f0=f, the dyna-

mical system would lead us, after M iterations, to a value fM satisfying

cos fM=−1.
In the following section we wish to generalise these results to the case

where the interactions are not constant along the lattice, but vary in a

periodic way along the generations. In the next sections we will derive the

following quite general result:

Theorem 1. Let Cd denote the rooted Cayley Tree with order d, in
the thermodynamic limit. Let the interaction between spins of the genera-
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tions i−1 and i be Ji for 1 [ i [ p and Ji+p=Ji for all i. The Lee–Yang

zeros are dense in the whole unit circle |z|=1 if and only if

L(r1, r2, ..., rp)=dp

1
1−r1
1+r121

1−r2
1+r22

· · ·1
1−rp
1+rp2

\ 1. (7)

If L(r1, r2, ..., rp) < 1, there is at least one gap free of Lee–Yang zeros in

the unit circle, around z=1.

First, we will derive this result for the case where the periodic Cayley

Tree is generated by repetition of the word ab, leading to the sequence of

interactions JaJbJaJb · · · . This is the case of period p=2. Then, we will

obtain the quite general result for arbitrary order d and period p, where the
sequence of interactions is generated by repetition of a general word

w=w1w2 · · ·wp of length p (the length here is defined as the number of

letters).

Finally, we will also discuss the case where the interactions along the

generations are aperiodic and given by sequences generated by substitution

rules on a finite alphabet. The specific examples of the Fibonacci and the

Thue-Morse chains are discussed, but we adopt a quite general approach

that can be used with any substitutional sequence.

The literature on the zeros of the partition function of the Ising model

on hierarchical lattices is very large and a more detailed list of references

can be found, for instance, in ref. 7. A common ingredient of many of these

works is the identification of the locus of the partition function zeros (in

the thermodynamic limit) with the Julia set of some discrete dynamical

system, typically interpreted as a renormalization group transformation of

some physical parameter. This is the origin of the typical fractal structures

exhibited by the distribution of partition function zeros for such lattices.

For the case of the Lee–Yang (fugacity) zeros on the Cayley tree, this

can be seen, for instance, in ref. 11 (and other references quoted there),

where the discrete dynamical system induced by the mappings yz of the unit

circle S1 (introduced in ref. 11) can be interpreted as a renormalization

group transformation for the fugacity. As discussed in ref. 11, the Julia set

of this discrete dynamical system coincides with the accumulation region of

Lee–Yang zeros on the circle when the thermodynamic limit is taken.

For the temperature zeros, also called Fisher zeros, we refer the

interested reader to the work of Derrida, de Seze and Itzykson (13) concern-

ing the Ising model on the diamond lattice, where the locus of the partition

function zeros is identified with the Julia set of a renormalization group

transformation for the variable e−bJ.
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3. THE PERIODIC CASE

Let us first consider the Cayley Tree with two different values of the

interaction between spins: Ja and Jb. Let Ji=Ja for i odd and Ji=Jb for i
even. From the root to the last generation of sites, we have the sequence of

interactions JaJbJaJb · · · . Under these conditions we say that the periodic

sequence is generated by the word ab. Defining the variables ra=e−2bJa and
rb=e−2bJb we have two different functions

La(h)=2h−4 arctan 1
ra sin(h)

1+ra cos(h)2
,

Lb(h)=2h−4 arctan 1
rb sin(h)

1+rb cos(h)2
.

The dynamical system to be discussed can be written as

f0=f

f1=f0+La(f0)

f2=f0+Lb(f1)=f0+Lb(f0+La(f0))

x

(8)

As in ref. 11, the Lee–Yang zeros are located at the angles f such that

f0=f implies cos fM=−1. We are interested in the properties of the

system in the thermodynamic limit MQ.. In order to keep the periodic

property, we will increase the number of generations by two in each step. It

is therefore natural to define a new dynamical system

f0=f

f1=f0+Lb(f0+La(f0))

x

fi+1=f0+Lb(f0+La(fi))=f0+Uf0(fi).

(9)

Above, we have defined Uf0(f)=Lb(f0+La(f)) to keep the notation as

simple as possible. Each iteration of the new dynamical system is equiv-

alent to two iterations of the previous one. Using the relation

L −j(x)=2 1
1−r2j

1+2rj cos x+r
2
j2

\ 2 1
1−r2j
(1+rj)22

=2
1−rj
1+rj

, (10)
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we have

U −f0(x)=L −b(f0+La(x)) L
−

a(x) \ 4
1−ra
1+ra

1−rb
1+rb

=L(ra, rb). (11)

Let us first obtain the behaviour of the distribution of zeros when the

following inequality holds:

L(ra, rb) \ 1, (12)

what is equivalent to 4(1−ra)(1−rb) \ 1+ra+rb+rarb. In terms of ra we

have the inequality

ra [
3−5rb
5−3rb

. (13)

Figure 2 presents the curve L(ra, rb)=1 in the space defined by the

variables ra and rb. The region characterised by L(ra, rb) \ 1 is bounded

by the curve and the two axis.

As a result of the Lee–Yang Circle theorem, the partition function on

the Cayley Tree with n generations has 22n−1 zeros in the unit circle of the

fugacity variable. Moreover, by the same arguments of ref. 11, the zeros

are all distinct. In the upper half plane, we can label the zeros

z(n, l)=e if(n, l), 1 [ l [ 2n, in increasing order of angle, using the increa-

singly ordered set {f(n, l) ¥ [0, p], 1 [ l [ 2n}. Since the zeros are all dis-

tinct, we can ensure that f(n, lŒ) > f(n, l) if lŒ> l.

Fig. 2. Curve L(ra, rb)=1 in the space (ra, rb).
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The first question that rises is what happens when the thermodynamic

limit is taken to the distance between two consecutive zeros, f(n, l+1) and
f(n, l). Defining fi(n, l) as the i-th iteration started form f(n, l), we have

for 0 [ i [ n−1

fi+1(n, l+1)−fi+1(n, l)=f(n, l+1)−f(n, l)+Uf0(n, l+1)(fi(n, l+1))

−Uf0(n, l)(fi(n, l)). (14)

Since

“Uf0
“f0

=L −b(f0+La(x)) \ 0, (15)

we have,

Uf0(n, l+1)(fi(n, l+1)) > Uf0(n, l)(fi(n, l+1)). (16)

Therefore, the distance between the (i+1)-th iteration of two succes-

sive zeros is bounded by

fi+1(n, l+1)−fi+1(n, l)

\ f(n, l+1)−f(n, l)+Uf0(n, l+1)(fi(n, l+1))−Uf0(n, l)(fi(n, l))

\ f(n, l+1)−f(n, l)+F
fi(n, l+1)

fi(n, l)
U −f0(n, l)(x) dx

\ f(n, l+1)−f(n, l)+L(fi(n, l+1)−fi(n, l))

\ 1C
i

k=0
L(ra, rb)k2 (f(n, l+1)−f(n, l)). (17)

Taking into account the relation fn(n, l+1)−fn(n, l)=2p, we can take

i=n−1 to derive from (17)

f(n, l+1)−f(n, l) [ 2p 1C
n−1

k=1
[L(ra, rb)]k2

−1

. (18)

Hence, if L(ra, rb) \ 1, the sum diverges for nQ., resulting in

lim
nQ.

(f(n, l+1)−f(n, l))=0. (19)
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To complete the proof that the Lee–Yang zeros are dense in the unit

circle of the fugacity variable, we need to show that f(n, 1) goes to zero as

the thermodynamic limit is taken. In fact,

fi+1(n, 1)=f(n, 1)+Uf(n, 1)(fi(n, 1)) \ f(n, 1)+U0(fi(n, 1))

\ f(n, 1)+F
fi(n, 1)

0
U −0(x) dx \ f(n, 1)+L(ra, rb) fi

\ f(n, 1) 1C
i

k=0
[L(ra, rb)]k2 . (20)

Setting i=n−1, the previous inequality can be combined with

fn(n, 1)=p to derive

f(n, 1) [ p 1C
n−1

k=0
[L(ra, rb)]k2

−1

. (21)

Therefore, in the thermodynamic limit, the right hand side goes to

zero, and we obtain

lim
nQ.
f(n, 1)=0. (22)

Since the Lee–Yang zeros are dense around z=1, the magnetisation at

the origin cannot be analytically continued from H< 0 to H> 0 or, in

terms of the fugacity, from z < 1 to z > 1. This lack of analyticity is

regarded as a phase transition.

We shall next establish that in the complementary region

L(ra, rb) < 1 the closure of the set of Lee–Yang zeros is a proper subset of

the unit circle. More precisely, we shall prove that there is at least one gap

free of zeros, around f=0. This gap prevents the existence of phase transi-

tion at finite temperature, since there is no lack of analyticity of the ther-

modynamic functions for the whole interval 0 [ z <..
If L(ra, rb) < 1, it is possible to find k1 such that, for all f0 < k1 we

have U −f0(0) < 1. To obtain the value of k1, all we have to do is solve the

inequality

U −f0(0)=4 1
1−r2b

1+2rb cos f0+r
2
b21

1−ra
1+ra2

=L(ra, rb)
(1+rb)2

1+2rb cos f0+r
2
b

< 1.

(23)

It is straightforward to show that

cos k1=
L(ra, rb)(1+rb)2−1−r2b

2rb
, (24)
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when the right hand side is greater than one and k1=p otherwise. It is

crucial to assume that L(ra, rb) < 1; otherwise, the right hand side would

be a number greater than one, and there would be no possible k1.
Moreover, it is not difficult to see that the second derivative of Uf0 is

positive for sufficiently small angles. Therefore, one can find k2 < k1 small

enough such that equation

f0+Uf0(f)=f (25)

has at least one solution in the interval [0, p). After rather long calcula-

tions, one could obtain a mathematically rigorous proof of the last state-

ment. Instead of taking this approach, we will use a graphical method

which provides a natural way to understand what happens to the dynami-

cal system. Figure 3 presents the graph of the functions g(f)=f0+Uf0(f)
and f(f)=f. The dashed lines indicate the evolution of the dynamical

system starting from f0 < k2. The system converges to a value w(f0) that is
the smallest among the solutions of (25).

Looking in more detail at the graph, we see that k2 is given by the

intersection of the y-axis with the curve g(f) that is tangent to f(f). To
obtain this value, we have to solve the following equations:

k2+Uk2(w)=w (26)

U −k2(w)=L −b(k2+La(w)) L
−

a(w)=1 (27)

Fig. 3. Functions g(f)=f0+Uf0(f) and f(f)=f.
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Summarising, taking f0 < min{k2, p} as the starting point, the

dynamical system converges to a value that is smaller than p, in such a way

that cos fM >−1 and z=e if0 cannot be a Lee–Yang zero. Therefore, the

whole interval [−k2, k2] is free of zeros of the partition function and there

is a gap around z=1.
We have concluded the proof of the following theorem:

Theorem 2. Let C2 denote the rooted Cayley Tree with order d=2,
in the thermodynamic limit. Let the interaction between spins of the

generations i and i+1 be Ja for i even and Jb for i odd. The Lee–Yang

zeros are dense in the whole unit circle |z|=1 if and only if

L(ra, rb)=4
1−ra
1+ra

1−rb
1+rb

\ 1. (28)

This condition is equivalent to

ra [
3−5rb
5−3rb

. (29)

If L(ra, rb) < 1, there is at least one gap free of Lee–Yang zeros in the

unit circle, around z=1.

It is interesting to note that, provided Ja is sufficiently small, the zeros

are not dense in the unit circle, regardless of the value of Jb. Let J
g
a denote

the suppremum of the values of Ja that satisfy this property. In the condi-

tions of the previous theorem, we have rg
a=3/5, or

e−2bJ
g
a=3/5QJg

a=
kT
2

ln
5
3
. (30)

For Ja < Jg
a the phase transition no longer occurs, regardless of how

large Jb can be.

4. GENERIC PERIOD p AND ORDER d

For arbitrary period p, the Liapunov exponent of the dynamical

system is related to the logarithm of the function

L(r1, ..., rp)=2p D
p

i=1 1
1−ri
1+ri2

. (31)
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The hypersurface L(r1, ..., rp)=1 is the boundary of the region of

parameters for which the Lee–Yang zeros become dense when the thermo-

dynamic limit is taken.

We can generalise even further and consider the Tree with order d. In
this case, the recursive relation for the partition function should be written

as

Zsj=5 CsŒ=±1
ebJjssŒebhsŒZsŒj+16

d

.

This relation will result in a new function:

Lj(h)=d 1h−2 arctan 1
rj sin(h)

1+rj cos(h)22
. (32)

Therefore, the properties of the system will be closely related to the

behaviour of the function

L (d)(r1, ..., rp)=dp D
p

i=1 1
1−ri
1+ri2

. (33)

In the case of period p=2, the region L(r1, r2) \ 1 will be

r1 [
(d2−1)−(d2+1) r2
(d2+1)−(d2−1) r2

(34)

and the limit interaction for the possibility of having a phase transition is

obtained by setting rb=0 in the right hand side:

rg
1=

d2−1
d2+1

QJg
a=

kT
2

ln
d2+1
d2−1

. (35)

For arbitrary period p, each interaction has a limit value given impli-

citly by L(r1, 0, 0, ..., 0)=1

dp

1
1−rg

1

1+rg
12
=1 (36)

or

rg
1=

dp−1
dp+1

QJg
1=

kT
2

ln 5
dp+1
dp−16 . (37)
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The approach adopted in the previous section is recommended when

the number of different interactions is exactly equal to the period. Should

any constraint among the interactions occur, we should try a slightly dif-

ferent method, which we will briefly describe.

Let us first consider the chain with period p=3 generated by repetition

of the word abb. In this case, the period is greater than the number of dis-

tinct interactions, and the previous method is not recommended. However,

it can be slightly modified to provide the solution of the problem.

Starting with the periodic chain generated by the word abc, our pre-

vious method indicates that the region in the space of interactions which

corresponds to a dense set of zeros in the whole unit circle is limited by the

surface

C(ra, rb, rc)=8 1
1−ra
1+ra21

1−rb
1+rb21

1−rc
1+rc2

=1. (38)

This is a convex surface, which contains the point (1/3, 1/3, 1/3), and
crosses the axis at the values

r=
2p−1
2p+1

=
7
9
. (39)

The case of the word abb corresponds to rb=rc. Therefore, we can

take the intersection of the curve with the plane rb=rc, and project it into

the plane rc=0.

Fig. 4. Solution for the sequence abbabbabb....
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We already know that the curve crosses the a-axis at ra=7/9. In order

to obtain the value where it crosses the b-axis (that must be a number

between 1/3 and 7/9), one should take the exact expression

C(ra, rb, rc)=8 1
1−ra
1+ra21

1−rb
1+rb2

2

=1 (40)

and set ra=0. We have

rb=
`8−1

`8+1
=0.4776... . (41)

When comparing the region bounded by the curve with the one from

the previous example (ab), we notice that the region which corresponds to

ra < 1/3 and rb > 1/3 increases, as the region bounded by the curve and

the constraints ra > 1/3 and rb < 1/3 decreases. We should not be sur-

prised with this fact, since it indicates the increase in importance of the

interaction Jb in the determination of the behaviour of the system, pro-

vided that it occurs twice as frequently as Ja in the sequence of couplings.

In fact, in the case of arbitrary period, the curve depends only on the

relative frequency of the interactions in the sequence. Our analysis will be

now restricted to the case of two different interactions. For instance, taking

the sequence generated by repetition of the word baabab, the condition for

existence of phase transitions is:

26 1
1−ra
1+ra2

3

1
1−rb
1+rb2

3

\ 1. (42)

Taking the square root, we reproduce exactly the condition obtained

in the case of period p=2. Analogously, the results obtained for the chain

abbabbabb... can be applied in the study of all chains where the proportion

of letters a and b is 1 : 2, as in baabbbbaabbb... and babbbababbba....
For the periodic chain, where the generating word has na letters a and

nb letters b with na+nb=p, na/p=fa and nb/p=nb, we have the curve

2p 1
1−ra
1+ra2

na

1
1−rb
1+rb2

nb
=1. (43)

Taking the p-th root,

2 1
1−ra
1+ra2

fa

1
1−rb
1+rb2

fb
=1. (44)
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Therefore, we have proved that when the values of the interactions are

fixed, the existence or absence of phase transition depends only on the

frequencies of each of the letters, regardless of the length and the particular

sequence of letters in the generating word.

5. THE APERIODIC CASE

We will first consider the Fibonacci chain as a model for treating

aperiodic chains. Consider the space {a, b}N of all semi-infinite sequences

of words generated by the letters a and b. The Fibonacci chain is the fixed

point in {a, b}N by the substitution sequence r (see the appendix), defined

on the alphabet {a, b} by

r(a)=b, r(b)=ba.

Its first elements are babbababbabbababbabab..., etc.
Although not periodic, the Fibonacci chain contains infinite units with

arbitrarily large length repeated in a quasi-periodic way along the chain:

As in the case of almost-periodic functions, which can be approxi-

mated by periodic ones, the Fibonacci chain can be approximated, in an

intuitive sense that can be made precise, by periodic sequences. We exploit

this idea and consider periodic approximants with increasingly large

periods for the partition functions defined by the Fibonacci chain. The

results we derived in our analysis of periodic sequences are independent of

the periods, but depend rather on the frequencies of the letters a and b on

the chain. Therefore, that results can be extrapolated to systems defined by

aperiodic sequences as well, provided the aperiodic sequences have periodic

approximants, as in the Fibonacci case. See refs. 7 and 8 and other

references therein.

We will, hence, consider the situation where the sequence of interac-

tions along the generations of the Bethe lattice is given by the Fibonacci

chain. Therefore, the interaction between the root and the nearest neigh-

bours sites is Jb, followed by Ja (second generation), Jb, Jb, Ja, etc. We shall

only be concerned with the case d=2. Although the sequence of interac-

tions is not periodic, the formalism developed in the last sections can
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be used to provide a sufficient but not optimal condition for the existence

of phase transition. The dynamical system to be considered is

f0=f

f1=f0+Lb(f0)

f2=f0+La(f1)=f0+La(f0+Lb(f0))

f3=f0+Lb(f2)

f4=f0+Lb(f3).

x

(45)

A brief description of the main results for aperiodic sequences gener-

ated by substitution rules is presented in the appendix. The most interested

reader can find the complete theory in ref. 12.

In analogy with the periodic case, we will introduce a new dynamical

system with fi restricted to the even values of i. This is equivalent to take

two interactions at each step.

To simplify the notation, we define

U (ba)
f0
(f)=Lb(f0+La(f)) (46)

and the analogous functions U (bb)
f0

and U (aa)
f0

. In the periodic case, we were

mainly concerned with the values the case where U −f0 was always greater

than one (for p=2, this is equivalent to the condition L(ra, rb) \ 1). While

dealing with aperiodic chains, this condition will also be sufficient to ensure

that the zeros are dense in the unit circle. However, for the Fibonacci

sequence, we have three conditions to be satisfied, L(ra, rb) \ 1,
L(rb, rb) \ 1 and L(rb, ra) \ 1, where the first and the third one are the

equivalent.

Each condition corresponds to one of the combinations U (ab)
f0

, U (bb)
f0

and

U (ab)
f0

. This is a consequence of the occurrence of the two-letter words ab, ba
and bb with non-vanishing frequency, and aa with zero frequency. This

fact, whose proof is deferred to the appendix, can be verified directly from

the substitution rule, but the idea can be used in more complicated

sequences, even if the alphabet is composed of more than two letters.

Let us suppose for a moment that the two inequalities L(ra, rb)=
L(rb, ra) \ 1 and L(rb, rb) \ 1 hold. The dynamical system for the i-th
step can be written as

fi=f0+U (Pi)
f0
(fi−1), (47)
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wherePi ¥ {ab, ba, bb}.Therefore,onecandefineL=min{L(ra, rb), L(rb, rb)}
in order to derive

fi+1(n, l+1)−fi+1(n, l)

\ f(n, l+1)−f(n, l)+U (Pi+1)
f0(n, l+1)(fi(n, l+1))−U (Pi+1)

f0(n, l)(fi(n, l))

\ f(n, l+1)−f(n, l)+F
fi(n, l+1)

fi(n, l)
U (Pi+1)Œ
f0

(x) dx

\ f(n, l+1)−f(n, l)+L(fi(n, l+1)−fi(n, l))

\ 1C
i

k=0
Lk2 (f(n, l+1)−f(n, l)). (48)

We are, hence, able now to obtain an upper bound for the distance

between two consecutive zeros:

f(n, l+1)−f(n, l) [ 2p 1C
n−1

k=1
Lk2

−1

. (49)

When L \ 1, the sum in the right hand side diverges when nQ., and the

distance goes to zero:

lim
nQ.

(f(n, l+1)−f(n, l))=0. (50)

By now, we were able to prove that the Lee–Yang zeros turn out to be

dense in a connected subset of the circle. We shall now obtain an upper

bound for the first Lee–Yang zero, which is given by

f(n, 1) [ p 1C
n−1

k=0
Lk2

−1

. (51)

In the infinite lattice limit we have again limnQ. f(n, 1)=0, and we

have established that the zeros are dense in the unit circle, provided L \ 1.
Figure 5 illustrates the region L \ 1 in the interaction space (ra, rb).

One should be careful to notice that we have no information on what

happens in the region outside the curve, defined by L< 1. In fact, it will be

shown that the region L \ 1 is not the optimal region where the zeros

become dense in the unit circle.

In order to obtain the optimal region, we will employ the ideas

developed in the last section. More precisely, we have derived that the
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Fig. 5. First approximation for the Fibonacci sequence.

region where the zeros become dense had the curve (44) as its boundary,

where the interactions between the generations has only two values Ja and

Jb, which is the case of the Fibonacci chain. In other words, it is valid

whenever the sequence is based on the alphabet {a, b}.
In the appendix, it will be shown that the relative frequency of each of

the letters in the final chain is given by the normalised eigenvector of the

substitution matrix

M=1
0 1

1 12
(52)

that corresponds to its maximal eigenvalue, whose existence is ensured by

the Perron–Frobenius Theorem.4 Thus, we need to obtain the maximal

4 Notice that M2 and higher powers of M have strictly positive entries and, hence, the Perron–

Frobenius theorem applies.

solution l+ of the characteristic equation det(lI−M)=l2−l−1=0. We

have l+=1+`5
2

. The corresponding eigenvector is v (1)=((fafb)), with

fa=
1

1+l+
=0.3819... ,

fb=
l+

1+l+
=0.6180... .

v (1) is normalised in such a way that fa+fb=1.
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The curve (44) crosses the ra-axis in

ra=
21/fa−1
21/fa+1

=0.7198... > 3/5 (53)

and the rb-axis in

ra=
21/fa−1
21/fa+1

=0.5085... < 3/5. (54)

It is clear that this result is an extension of the previous one, since the

latter curve lies completely outside the former region. In the region outside

the curve (44), there is a gap around z=1, which prevents the existence of

phase transition at finite temperature.

This idea can also be used in the case of the Thue-Morse sequence,

generated by the following substitution rule:

r(a)=ab, r(b)=ba, (55)

which leads to the chain

bQbaQbaabQbaababbaQbaababbaabbabaab · · · . (56)

Fig. 6. Optimal region for the Fibonacci sequence.
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In this case, the maximal normalised eigenvector which corresponds to

the maximal eigenvalue is v (1)=((1/21/2)). This is equivalent to say that the two

letters, a and b, have the same frequency of occurrence. Therefore, condi-

tion for the existence or absence of phase transition is the same as in the

case of period p=2.

6. THE ONE-DIMENSIONAL MODEL AND THE TRANSFER MATRIX

FORMALISM

We shall now discuss the one-dimensional ferromagnetic Ising model

with nearest neighbour interactions in an external magnetic field. Assuming

periodic boundary conditions, the Hamiltonian for the chain with N sites

can be written as

H(s)=−C
N

i=1
Jisisi+1−C

N

i=1
Hsj,

where sN+1=s1. Let Jj \ 0 denote the interaction between the j-th and the

(j+1)-th sites and H is the strength of the external magnetic field.

The partition function of the system can be conveniently written in

terms of transfer matrices as

ZN=Tr(T1T2 · · · TN),

where

Tj=1
z1/2ebJj e−bJj

e−bJj z−1/2ebJj2
, (57)

where, for convenience, we the fugacity variable now as z=e2bH.
Since we shall only be concerned with periodic chains, we will assume

that the relation Ji+p=Ji is valid for all i and for some p which defines the

period of the chain. Therefore, the partition function for the chain of

length N=n ·p is ZN=Tr(T (p))n, where T (p)=T1T2 · · · Tp. As we shall see

later, the determinant of T (P) is non-vanishing whenever b−1=T ] 0, in

such a way that one can define the complex variable f, (7) with real part in

[0, p], by

cos(f)=
Tr(T (p))

2`det(T (p))
. (58)
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The importance of this variable lies in the fact that the Lee–Yang

zeros are uniformly distributed in f, when the thermodynamic limit is

taken. This is a consequence of the following equality, (7)

Zn=2(det T (p))n/2 cos(nf),

which can be verified by induction in n. Therefore, the Lee–Yang zeros

correspond precisely to the zeros of cos(nf), which are given by the real

numbers f=(k−1/2) p/n, k=1, 2, ..., n. In the limit NQ., the distribu-

tion of zeros becomes uniform in [0, p], in the variable f.

Our purpose in the following section is to derive the general equation

(58) in terms of the interactions Ji and the magnetic field H. This general

expression is useful in obtaining the structure of gaps (connected regions

free of Lee–Yang zeros) that appear in the unit circle of the fugacity vari-

able z. We were able to prove a general proposition (Proposition 1, below),

whose most important consequence is the following theorem, which con-

nects the angular variables f and h, the later being the argument of the

fugacity variable z on the complex unit circle. This theorem will be the

starting point of our analysis of the gap structure of the Lee–Yang zeros.

Theorem 3. Consider a one-dimensional and periodic lattice, with

period p. Let h be the angle for the unit circle of the fugacity variable:

z=e ih. Let yi=exp(2bJi) and let also Lp+ denote the set

Lp+=3{si}
p
i=1, si=±1, D

p

i=1
si=14 . (59)

Then, relation (58) can be written as

cos(f)=
C

{si} ¥ L
p+ 1D

p

i=1
y (si−1)i 2

1/2

cos 5
h

2
C
p

i=1
D
i

j=1
sj6

5D
p

i=1
(1−y−2i )6

1/2
. (60)

One can easily see that cosf is a polynomial of order p in cos(h/2). We

shall see that the order of the polynomial is related to the maximum

number of gaps that can appear in the unit circle.

7. GENERAL RESULTS
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In terms of h and of yi, the transfer matrices in the unit circle can be

written as

Ti=1
y1/2i e ih/2 y−1/2i

y−1/2i y1/2i e−ih/22
. (61)

We notice that the entries Tab, a, b=1, 2, of these complex matrices have

the following properties: T11=T22 and T12=T21. It is also interesting to

notice that the subspace of 2×2-matrices for which these properties hold is

closed under multiplication. Indeed, let B and C be two such matrices. If

A=BC, then

A22=C
i
B2iCi2=B22C22+B21C12=B11C11+B12C21=C

i
B1iCi1=A11

A21=C
i
B2iCi1=B21C11+B22C21=B12C22+B11C12=C

i
B1iCi2=A12.

This fact will simplify our calculations.

We wish to obtain a general expression for the trace of T (p). By the

discussion above, we will only be concerned with the elements T (p)
11 and T (p)

12 ,

since T (p)
22 and T (p)

21 can be obtained by complex conjugation.

Since T (p) is the product of p 2×2-matrices with non-vanishing matrix

elements, T (p)
11 is the sum of 2 (p−1) terms involving products of the matrix

elements of Tj for j=1, ..., p. From (61), each of these terms is composed

by a factor like y±1/2
1 y±1/2

2 · · · y±1/2
p times the exponential of an integer mul-

tiple of ih/2. In T (p)
11 , we will find the terms with an even number of nega-

tive exponents y−1/2i , while T (p)
12 will be composed by the terms with an odd

number of factors y−1/2i . Moreover, each positive factor y1/2i contributes

with h/2 to the argument of the exponential when it is preceded by an even

number of factors y−1/2j , j < i, and contributes with −h/2 when it is pre-

ceded by an odd number of such terms. The negative factors do not add

any change to the argument of the exponential.

Let us express these results more precisely. Let Lp+ be defined by (59).

Analogously, define

Lp−=3{si}
p
i=1, si=±1, D

p

i=1
si=−14 .

By the discussion above, we should expect to have

T (p)
11= C

{si} ¥ L
p+ 1D

p

i=1
y sii 2

1/2

exp 5
ih
2 1C

p

i=1

(si+1)
2

D
i−1

j=1
sj26 ,

T (p)
12= C

{si} ¥ L
p− 1D

p

i=1
y sii 2

1/2

exp 5
ih
2 1C

p

i=1

(si+1)
2

D
i−1

j=1
sj26 ,
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where the argument of the exponential is written in such a way to ensure

that each si=−1 does not contribute, and each si=1 makes a contribution

of

h

2
D
i−1

j=1
sj=(−1)ni

h

2
,

where ni is the number of negative signals that precede the element i.
We can simplify the expression for the matrix if we note that

C
p

i=1

(si+1)
2

D
i−1

j=1
sj=

1
2 51C

p

i=1
D
i

j=1
sj2+1+1C

p

i=2
D
i−1

j=1
sj26

=
1
2 51C

p

i=1
D
i

j=1
sj2+1+1C

p−1

i=1
D
i

j=1
sj26 ,

and that, for {sj} ¥ Lp± , ±1=<p
j=1 sj. Then we can write

C
p

i=1

(si+1)
2

D
i−1

j=1
sj=C

p

i=1
D
i

j=1
sj

for {si} ¥ Lp+ and

C
p

i=1

(si+1)
2

D
i−1

j=1
sj=

1
2 52 1C

p

i=1
D
i

j=1
sj2+26=1+C

p

i=1
D
i

j=1
sj

for {si} ¥ Lp−.
The discussion above motivates the proof of the following proposition.

Proposition 1. Consider the one-dimensional Ising model, of period

p, with periodic boundary conditions. The matrix T (p), defined by the

product of transfer matrices T (p)=T1T2 · · · Tp, has its entries given by

T (p)
11= C

{si} ¥ L
p+ 1D

p

i=1
y sii 2

1/2

exp 5
ih
2

C
p

i=1
D
i

j=1
sj6 ,

T (p)
12= C

{si} ¥ L
p− 1D

p

i=1
y sii 2

1/2

exp 5
ih
2 11+C

p

i=1
D
i

j=1
sj26 .

The other entries T (p)
22 and T (p)

21 can be obtained by the complex conjugates

of T (p)
11 and T (p)

12 , respectively.
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Proof. The proof is made by induction. For p=2, we have

L2+={(+1, +1), (−1, −1)}, in such a way that

T (2)
11=(y1y2)1/2 e ih+(y1y2)−1/2= C

{si} ¥ L
2+ 1D

2

i=1
y sii 2

1/2

exp 5
ih
2

C
2

i=1
D
i

j=1
sj6 ,

T (2)
11=y

1/2
1 y

−1/2
2 e ih/2+y−1/21 y1/22 e−ih/2= C

{si} ¥ L
2− 1D

2

i=1
y sii 2

1/2

exp 5
ih
2 11+C

2

i=1
D
i

j=1
sj26 ,

and the proposition is valid for p=2. Suppose that it is valid for some

p=k. For p=k+1 we have

T (k+1)=T (p)Tk+1=1
T (k)
11 T (k)

12

T (k)
21 T (k)

22
21
y1/2k+1e

ih/2 y−1/2k+1

y−1/2k+1 y1/2k+1e
−ih/22 . (62)

By the induction hypothesis,

T (k+1)
11 = C

{si} ¥ L
k+ 1D

k

i=1
y sii 2

1/2

y1/2k+1 exp 5
ih
2 11+C

k

i=1
D
i

j=1
sj26

+ C
{si} ¥ L

k− 1D
k

i=1
y sii 2

1/2

y−1/2k+1 exp 5
ih
2 11+C

k

i=1
D
i

j=1
sj26 .

We can write 1=<k+1
j=1 sj whenever {si}

k
i=1 ¥ L

k+ and sk+1=1 or

{si}
k
i=1 ¥ L

k− and sk+1=−1. Therefore,

T (k+1)
11 = C

{si} ¥ L
k+

sk+1=1

1D
k+1

i=1
y sii 2

1/2

exp 5
ih
2

C
k+1

i=1
D
i

j=1
sj6

+ C
{si} ¥ L

k−

sk+1=−1

1D
k+1

i=1
y sii 2

1/2

exp 5
ih
2

C
k+1

i=1
D
i

j=1
sj6 .

In fact, the two summations cover the whole set of sequences L (k+1)+,

and we have

T (k+1)
11 = C

{si} ¥ L
(k+1)+ 1D

k+1

i=1
y sii 2

1/2

exp 5
ih
2

C
k+1

i=1
D
i

j=1
sj6 .

Analogously, for the other matrix element,

T (k+1)
12 = C

{si} ¥ L
k+ 1D

k

i=1
y sii 2

1/2

y−1/2k+1 exp 5
ih
2

C
k

i=1
D
i

j=1
sj6

+ C
{si} ¥ L

k− 1D
k

i=1
y sii 2

1/2

y1/2k+1 exp 5
ih
2

C
k

i=1
D
i

j=1
sj6 .
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In order to insert the last term in the summation, one should note that

−1=<k+1
j=1 sj whenever {si}

k
i=1 ¥ L

k+ and sk+1=−1 or {si}
k
i=1 ¥ L

k− and

sk+1=1. Therefore,

T (k+1)
12 = C

{si} ¥ L
k+

sk+1=−1

1D
k+1

i=1
y sii 2

1/2

exp 5
ih
2 11+C

k+1

i=1
D
i

j=1
sj26

+ C
{si} ¥ L

k−

sk+1=1

1D
k+1

i=1
y sii 2

1/2

exp 5
ih
2 11+C

k+1

i=1
D
i

j=1
sj26 .

As above, the two summations cover L (k+1)− and the proof is

concluded. L

Theorem 3 is a direct consequence of the previous result, since

Tr(T (p))=2 Re(T (p)
11 ).

8. THE STRUCTURE OF GAPS. ANALYSING PARTICULAR CASES

From now on, we will use Theorem 3 to treat several examples of

periodic chains. By taking different values of p, we shall observe patterns in
the distribution of zeros that will be helpful in determining its general

properties.

The cases of period p=1 and p=2 were already treated in the litera-

ture, in refs. 3 and 7 respectively. We will reproduce some of these results

with the purpose of getting used to our method.

For constant interaction, we have L1+={+1} which leads to

Tr(T1)=2y1/21 cos(h/2). Recalling that det(T1)=y1−y
−1
1 we have

cos f=
cos(h/2)
(1−y−21 )1/2

. (63)

From this expression we see that cos(h/2) is bounded by

−2 arccos(1−y−21 )1/2 < h< 2 arccos(1−y−21 )1/2,

where the upper and lower bounds are numbers between 0 and 1. In other

words, the zeros do not close in onto the positive real axis, what prevents

the existence of phase transition. Since this absence of phase transition at

non-zero temperature is characteristic of the one-dimensional ferromagne-

tic Ising model, one should expect to observe this gap for any period p.
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Since the distribution of zeros is uniform in f, we can take the inverse

of the equation (63) to obtain the integrated density of zeros

I(h)=3
0, 0 [ h [ h+

1
p
arccos 5

cos(h/2)
(1−y−21 )1/26, h+ < h [ p

1−I(1−h/2p), p< h [ 2p

.

This function can be differentiated to obtain the results presented in the

classical papers of Lee and Yang.

For p=2 the set to be considered is L2+={(+1, +1), (−1, −1)} and

the relation between f and h will be

cos(f)=
cos h+(y1y2)−1

[(1−y−21 )(1−y−22 )]1/2
.

This expression allows us to obtain all the Lee–Yang zeros as a func-

tion of h. For the chain of length N=2n we have the following zeros in the

interval [0, p]

hm=arccos 5`(1−y−21 )(1−y−22 ) cos 1
(2k−1)p

2n 2−(y1y2)−16 ,

for 1 [ m [ n. The zeros between p and 2p are obtained by the symmetry

under reflection on the real axis.

As in the case of constant interaction, the zeros are again bounded by

a minimum h+. However, we have also an upper bound h−, that is respon-

sible a second gap around h=p. These limit values are obtained by taking

cos f=±1:

h±=arccos[±`(1−y−21 )(1−y−22 )−(y1y2)−1].

The integrated density of zeros is given by

I(h)=3
0, 0 [ h [ h+

1
2p

arccos 5
cos(h)+(y1y2)−1

[(1−y−21 )(1−y−22 )]1/26 , h+ [ h [ h−

1/2, h− [ h [ p

1−I(1−h/2p), p< h [ 2p

.
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We shall now see how the method developed in this work can be used

to obtain the gap structure for more complex situations of increasing

periods. For p=3 we have the general relation:

cos f=
cos

3h
2
+[(y1y2)−1+(y2y3)−1+(y3y1)−1] cos

h

2
[(1−y−21 )(1−y−22 )(1−y−23 )]1/2

. (64)

This equation can be treated as a polynomial equation of order 3 in

cos h/2,

cos f=
4 cos3

h

2
+[(y1y2)−1+(y2y3)−1+(y3y1)−1−3] cos

h

2
[(1−y−21 )(1−y−22 )(1−y−23 )]1/2

=P(u).

where we have defined the variable u=cos h/2. It is interesting to note that

P(1)=
1+(y1y2)−1+(y2y3)−1+(y3y1)−1

[(1−y−21 )(1−y−22 )(1−y−23 )]1/2
> 1,

for T ] 0. This inequality is responsible for the first gap around h=0.
Figure 7 presents a sketch of the graph of P(u). Since the set of Lee–

Yang zeros becomes dense in f ¥ [0, p] when the thermodynamic limit is

taken, it is also dense in the inverse image of the interval [−1, 1], when the

Fig. 7. Sketch of the graph of P(u).
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variable h is considered. The complementary regions are free of zeros, and

correspond to the gaps.

We have already explained why the gap around h=0 appears. The

second gap results form the minimum of P(u) that occurs between B and C.
Analogously, the maximum between D and E gives rise to the third gap. If

we solve the third order polynomial equation P(u)=1 we can obtain the

values of A, D and E; the solution of P(u)=−1 gives us B, C and F.
If we generalise the previous discussion to the case of arbitrary period

p, we see that PŒ(u)=0 will be a polynomial equation of order p−1, and it

will have p−1 solutions in the interval [−1, 1]. Each solution will be res-

ponsible for an extreme value (maximum or minimum) if the function, that

will correspond to one gap free of zeros. Moreover, if we consider the gap

around h=0, we obtain that the maximal number of gaps for the periodic

chain is equal to its period. We say maximal number because, as we shall

see later, certain symmetries can close some of the gaps, since they can only

appear when |P(u)| > 1 around the points where PŒ(u)=0.
It is interesting to notice that the symmetry under inversion of the

magnetic field determines a well-defined parity for P(u). Therefore, in the

case of odd period we have only odd powers of u (or factors like cos(mh/2),
for m=1, 3..., p), whereas for even period only even powers should occur

(cos mh/2, for m=0, 2, ..., p).
The case of period p=4 is also interesting, since the results depend

only on the solution of a polynomial equation of order p= in cos h, allow-

ing us to obtain the exact location of the gaps rather easily. In this case,

equation (58) can be written as

cosf=
2u2+;4

i=1 (yiyi+1)
−1u+;d(i, j)=2 (yiyj)

−1+(<4
i=1 yi)

−1−1
[<4

i=1 (1−y
−2
i )]1/2

=P(u),

where d(i, j) is the number of edges between the vertices i and j in a closed

chain of four vertices and where we redefined the variable u as u=cos h

and used cos 2h=2cos2 h−1.
Figure 8 sketches P(u) for u ¥ [−1, 1]. Again, the region where the

zeros become dense corresponds to P−1([−1, 1]). The minimum of the

parabolic curve is responsible for the second and fourth gaps. The third

gap is the result of P(−1) > 1.
To obtain the values of A± and B± , all we have to do is to solve the

second order equation

2u2+5C
4

i=1
(yiyi+1)−16 u

+5 C
d(i, j)=2

(yiyj)−1+1D
4

i=1
yi2

−1

−1±1D
4

i=1
(1−y−2i )2

1/2

6=0.
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Fig. 8. Sketch of the graph of P(u).

If we consider the case of finite chain of length N=4n, the zeros of the
partition function will be located at the values

f=
(k−1/2)p

n
, k=1, ..., n.

Therefore, in the y-axis of Figure 8 we have n distinct points in the

interval −1 [ P(u) [ 1. The inverse image of each of this points leads to

two different values of u=cos h, which corresponds to four values for h,

each of them in a different region where the zeros become dense. Thus, in

the finite case, the number of zeros in each region is exactly one fourth of

the total number of zeros. If we take the infinite chain limit, we can label

the gaps by the value of the integrated density of zeros (that must be cons-

tant inside the gap). Therefore, for p=4, the above discussion leads to the

following set of labels for the gaps, {m4 , m=0, 1, ..., 4}, where m=0 and

m=4 correspond to the same gap.

For arbitrary period, the analysis is also valid. However, the inverse

image of cos[(k−1/2) p/n] will be composed of p points u=cos(h/2),
distributed along the p dense regions. Therefore, the gaps can be labelled

by the values {mp , m=0, 1, ..., p}.
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We shall now analyse the conditions that must be satisfied in order to

ensure that each of the gaps does in fact appear in the thermodynamic

limit. First,

P(1)=
1+[;4

i=1 (yiyi+1)
−1+;d(i, j)=2 (yiyj)

−1+(<4
i=1 yi)

−1]
[<4

i=1 (1−y
−2
i )]1/2

results in

P(1) > 1, T ] 0, (65)

P(1) = 1, T=0, (66)

as it was expected, since the one-dimensional Ising model with short range

interactions is not expected to exhibit a phase transition for finite tempera-

ture. Regarding the gap around h=p,

P(−1)=
1+[−;4

i=1 (yiyi+1)
−1+;d(i, j)=2 (yiyj)

−1+(<4
i=1 yi)

−1]
[<4

i=1 (1−y
−2
i )]1/2

.

It is straightforward to show that P(−1)=1 when y1=y2=y3=y4.
However, it is not only in this rather trivial situation that the third gap

closes. As we have said earlier, certain symmetries can close some of the

gaps without reducing the period. Let us, for instance, consider the case

where y1=y2=x−1 and y3=y4=y−1. Although the period is still p=4, we
have now

P(−1)=
1+x2y2−x2−y2

(1−x2)(1−y2)
=1,

which means that the third gap closes (see Figure 9).

The fact that symmetries can close some of the gaps must be consi-

dered in the case of greater period, and also in the case of aperiodic chains,

where the sequence of interactions is given by a substitution rule (Thue-

Morse, Fibonacci, etc.). (7)

It remains to study the value of P(u) at the vertex of the parabolic

curve, that we denote by P(uv). Whenever P(uv) <−1, the second and

fourth gap appear. We have

P(uv)=
−[;4

i=1 (yiyi+1)
−1]2+8[;d(i, j)=2 (yiyj)

−1+(<4
i=1 yi)

−1−1]
8[<4

i=1 (1−y
−2
i )]1/2

.
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Fig. 9. Unitary circle |z|=1.

When y1=y2=y3=y4=x−1 we have

P(uv)=
−16x4+8(2x2+x4−1)

8(1−x2)2
=−1. (67)

The gaps also close when we reduce the period of the chain to p=2 by

taking y1=y3=x−1 and y2=y4=y−1:

P(uv)=
−8(1−x2−y2+x2y2)

8(1−x2)(1−y2)
=−1. (68)

9. CONCLUSIONS

We have studied the distribution of the Lee–Yang zeros for the Cayley

Tree, with interactions that vary in a periodic or aperiodic way (but given

by sequences generated by substitutions) along the generations. Our main

interest was to determine the circumstances under which the set of

Lee–Yang zeros become dense over the unit circle. The importance of this

fact is that, if the zeros are dense around |z|=1, some of the thermodyna-

mic functions cannot be analytically continued from |z| < 1 to |z| > 1. For
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instance, one can study the behaviour of the magnetisation at the origin

when the zeros become dense. For period p=2 and order d=2, we have

proved that a phase transition occurs only for L(ra, rb) \ 1. In the

complementary region, the absence of phase transition is explicitly shown.

For generic period p and order d, the properties of the distribution of

zeros are derived from the Liapunov exponent of the related dynamical

system and all one has to do is evaluate the generalised function

L (d)(r1, r2, · · · , rp), whose logarithm provides a lower bound for the Lia-

punov exponent. In the case where L (d)(r1, r2, · · · , rp) is greater or equal

than one, we have a dense set of zeros. Otherwise, the distributions has a

gap around |z|=1 and no phase transition should occur.

The aperiodic case, where the interactions are derived from a sequence

generated by a substitution rule in a finite alphabet, is rather interesting,

since the occurrence frequency of each of the interactions can be calculated

explicitly. We have proved that the region where the zeros become dense

depends only on the value of each of the interactions and their frequencies.

We were also able to obtain results for the Fibonacci and the Thue–Morse

sequences, but one can employ our ideas for any substitutional sequence

(Rudin–Shapiro, etc).

In this work, we were only concerned about the gap around h=0 for

the Cayley Tree, and the structure of gaps that may appear for periodic

interactions was not analysed. The fact that a periodic sequence of interac-

tions leads to a sequence of gaps in the unit circle of the fugacity variable is

well-known for the one-dimensional lattice. In this case, we were able to

obtain a general treatment for the gap structure for arbitrary period p.
From this treatment, one can obtain the number of gaps for each sequence

of interactions and locate them in the unit circle. The conjunction of the

results from the two parts of this work might be used as the starting point

to obtain the general gap structure for the rooted Cayley Tree (and for

other lattices with properties not to different from the one-dimensional lat-

tice), although the absence of transfer matrices formalism may introduce

some difficulties in the treatment.

APPENDIX. SUBSTITUTION SEQUENCES

Let A={0, 1, ..., s−1} be a finite set with cardA=s. A*=1k \ 1 Ak

denotes the set of all finite words over the alphabet A. We consider the set

AN which consists in sequences x={xn}n \ 0 with components in A. AN is

endowed with the topology defined by the metric

d(x, y)=3
exp(−min{k \ 0, xk ] yk}), if x ] y

0, if x=y
. (69)
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It is important to note that AN is complete with the metric above. We

define on AN the one-sided shift transformation by (Tx)k=xk+1. Clearly, T
is continuous and surjective.

A substitution r on A is a map from A to A* which associates to the

letter i ¥ A, 0 [ i < s the word r(i). Any substitution r induces a map from

A* to A*, which associates to the word B=b0 · · · bn the word r(B)=
r(bo) · · ·r(bn). Analogously, we define a map from AN to AN by

r(x)=r(x0) r(x1) · · · .
Since we are interested in fixed points of r, we should note the follow-

ing result

Proposition 2 (See ref. 12). Let r be a substitution rule such that,

for every a ¥ A, |rn(a)| goes to infinity. Then, there exists u ¥ AN fixed point

of rk, for some k \ 1.

We can find a and a positive k such that rk(a) begins by a (otherwise,
the alphabet would not be finite). Let x be an arbitrary sequence which

begins by a. Then, rkn(x) begins by rkn(a), so that rkn(x) e rkn+kp(x) begins
by the same word, whose length goes to infinity. {rkn} is a Cauchy

sequence in AN, and converges to a sequence satisfying u=rk(u) and

beginning by a. We can obtain this fixed point of rk by iterating the sub-

stitution rk on a.

From now on, we assume that for all a ¥ A, limnQ. |rn(a)|=..
Moreover, there exists a letter, which we denote by 0, such that r(0) begins
by 0.

Let us denote by u the fixed point of r, obtained by u=r.(0). We

shall consider only the letters of A which actually appear in u.
In order to prepare for the Perron–Frobenius Theorem, we should

consider the following definition.

Definition 1. A substitution r is said to be primitive if there exists k
such that rk(a) contains b, for all a and b.

If B and C are words in A*, we denote by LC(B) the occurrence

number of C in B. In particular, if i ¥ A, Li(B) is the number of i occurring
in B.

With this notation, we define the r-matrix M=M(r) whose entries are
Mij=Li(r(j)). For instance, the Fibonacci sequence, defined in the alpha-

bet {a, b} by

r(a)=b, r(b)=ba, (70)

has the substitution matrix M given in (52).
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Since Mk
ij=Li(rk(j)), we can say that r is primitive if and only if M is

primitive, which means that Mk is strictly positive for some k. Therefore,
for any primitive r, we can apply the Perron–Frobenius Theorem to the

substitution matrix M(r).

Theorem 4 (See ref. 12). Let M be a primitive positive matrix. Then

1. M admits a positive eigenvalue h, such that h> |l| for any other

eigenvalue l of M.

2. There exists a strictly positive eigenvector corresponding to h.

3. h is a simple eigenvalue.

Let r be any primitive substitution on A. The following propositions

are corollaries of the Perron–Frobenius Theorem.

Proposition 3 (See ref. 12). For every a ¥ A, the sequence

{L(r
n(a))
h
n }n \ 1 converges to a strictly positive eigenvector corresponding to h.

Since h is a simple eigenvalue, we may decompose M into the sum

M=hPh+N, where Ph is some projection onto the one-dimensional space

ker(M−hI), and N is an operator satisfying NPh=PhN=0. Therefore, we
have Mn=hnPh+Nn, or

Mn

hn
=Ph+

Nn

hn
. (71)

Since h is the dominant eigenvalue, the last term in the right hand side goes

to zero and limnQ.
Mn

h
n=Ph. Using L(rn(a))

h
n =MnL(a)

h
n , we have

lim
nQ.

L(rn(a))
hn

=Ph(L(a)). (72)

Since L(a) has all its components equal to zero, except for the a-

component, which is equal to 1, it follows that its projection is a strictly

positive eigenvector corresponding to h.

The next result provides a way to calculate the occurrence frequency

of each of the letter in the limit sequence.

Proposition 4 (See ref. 12). Let a, j ¥ A. Then

lim
nQ.

Lj(rn(a))
|rn(a)|

=vj > 0 (73)

and this limit is independent of a.
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We observe that

lim
nQ.

L(rn(a))
|rn(a)|

=lim
nQ.

L(rn(a))
OL(rn(a)), IP

=lim
nQ.

L(rn(a))/hn

OL(rn(a))/hn, IP
=

w(a)
Ow(a), IP

, (74)

where w(a)=PhL(a) is the positive eigenvector associated to h, obtained

in the last proposition. One can notice that v=(vj) is normalised by,

; s−1
j=0 vj=1. Therefore, and since h is a simple eigenvalue, it follows that the

number vj are positive and independent of a.

As a result, all one has to do in order to obtain the occurrence

frequency of each of the letter in the final chain is to calculate the positive

eigenvector associated to the maximal eigenvalue of the substitution

matrix.
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